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The Bogoliubov condition of compensation of dangerous diagrams is invoked to derive a generalized 
energy-gap equation of the BCS form, but with a renormalized pairing interaction and renormalized single-
particle energies. The second-order contributions to the renormalized pairing interaction are found to be 
significant, contrary to popular belief. I t is stressed that the self-consistent solution of the energy-gap 
equation yields qualitatively and quantitatively different results than a perturbative evaluation of the 
energy spectrum following a Bogoliubov-Valatin transformation characterized by the lowest order BCS gap 
parameters. The dependence of the energy gap on high-order corrections is studied in one and three dimen­
sions for simple potentials; for some values of the potential parameters, no solution to the gap equation 
exists. Finally, the energy gap is studied in nuclear matter. We include the scattering in both singlet and 
triplet states of particle-hole pairs which can be neutron-neutron, neutron-proton, or proton-proton. The 
interaction is taken to be a sum of separable potentials which reproduce the s-wave phase shift. Because of 
the short-range repulsion that is included, we sum an infinite set of particle-particle diagrams which replaces 
the second-order potential vertices by T matrices. The higher order effects studied increase the energy gap 
by a large factor, especially when the lowest order BCS gap is calculated to be small. Nevertheless, the 
qualitative conclusion remains that the energy gap in infinite nuclear matter appears to be considerably 
smaller than that in the heaviest nuclei. 

gral equation for an infinite system employing the 
Gammel-Thaler6 potential. This potential not only fits 
two-body scattering data up to a few hundred MeV, but 
also has been successful in reproducing the bulk proper­
ties of nuclear matter. Although the BCS equation is 
capable of yielding a finite gap for an infinite system, 
Emery and Sessler found the gap in nuclear matter to be 
three orders of magnitude smaller than the gap observed 
in the heaviest nuclei. Qualitatively similar results have 
been obtained by Brueckner et al.,7 who (incorrectly) 
used the nuclear matter two-body K matrix instead of 
the bare two-body potential in the BCS equation. In a 
companion paper,8 more recent calculations based on a 
variety of internucleonic potentials satisfying s-wave 
scattering data are shown to yield qualitatively similar 
results. The conclusion that the BCS theory predicts a 
very small gap for infinite nuclear matter appears not to 
be sensitively dependent upon the special choice of 
potentials. 

We can understand physically why the BCS integral 
equation yields a negligibly small value for the energy 
gap. The dominant potential-matrix elements are be­
tween pairs of particles at the Fermi surface (and, of 
course, with zero center-of-mass momentum). These 
correspond crudely to the scattering of 80-MeV particles 
in the center-of-mass system or 160-MeV incident 
energy in a laboratory experiment. At these high 
energies (the highest available to nucleon pairs in a 
Fermi-gas model of the nucleus) the repulsive core is 
effective in virtually destroying the attraction. The re­
pulsive core, however, is necessary for understanding 
nuclear saturation. 

• J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957). 
7 K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel, 

Phys. Rev. 118, 1442 (1960). 
8 R. Kennedv, L. Wilets, and E. M. Henley, following paper, 

Phys. Rev. 133, B1131 (1964). This will henceforth be referred to 
as paper II. 
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I. INTRODUCTION 

IN recent years, impressive progress has been made in 
understanding nuclear spectra in terms of phenom-

enological, two-body potentials. This work has been 
spurred by the Copenhagen group1 which specifically 
employs a short-range pairing (seniority2) force and a 
longer range quadrupole force. The forces are charac­
terized by relatively few parameters, each of which may 
vary smoothly with A. 

The pairing interaction—which concerns us here— 
gives rise to an energy gap in the spectra of even-even 
nuclei consistent with observation. Other manifestations 
of the pairing force include even-odd ground-state mass 
differences and the reduction of nuclear rotational mo­
ments of inertia from the rigid value. In Fig. 1 are 
displayed the pairing energies deduced from empirical 
even-odd mass differences.3 These numbers are ap­
proximately half the energy gap in even-even nuclei. 
The regions away from closed shells (that is, where the 
nuclei have intrinsic deformations and shell-structure 
degeneracies are effectively broken) exhibit considerable 
regularity in the pairing energy. Except near closed 
shells, the pairing energy is seen to decrease slowly with 
increasing ^4. 

Much less progress has been made in understanding 
the origin of the phenomenological, relatively strong, 
short-range pairing force in terms of two-body forces de­
rived from scattering experiments. In particular, Emery 
and Sessler4 solved the Bardeen-Cooper-Schrieffer5 inte-

* Supported in part by the U. S. Atomic Energy Commission 
under Contract A.T.(45-1)-1388, program B. 

1 See, for example, L. S. Kisslinger and R. A. Sorensen, Kgl. 
Danske Videnskab. Selskab, Mat. Fys. Medd. 32, No. 9 (1960). 

* G. Racah, Phys. Rev. 63, 367 (1943). 
3 P. E. Nemirovsky and Yu. V. Adamchuk, Nucl. Phys. 39, 551 

(1962). 
4 V. J. Emery and A. M. Sessler, Phys. Rev. 119, 248 (1960). 
« J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 

1175 (1957). This paper will be referred to as BCS hereafter. 



ENERGY GAP IN NUCLEAR MATTER, I. EXTENDED THEORY B1119 

5.0 

4.5 

4.0 

3.5 

(MeV) 3 '° 

2.0 

1.5 

t.O, 

0.5 

1111111 
20 40 60 80 100 120 140 

ATOMIC Weight-A 
240 

FIG. 1, Pairing energy of two nucleons deduced from even-odd mass differences, reproduced from Nemirovsky and Adamchuk (Ref. 3). 
The black circles (8P) refer to protons, the open circles (5n) to neutrons. 8 is an average empirical fit. The pairing energy 5 is approxi­
mately, but not identically, equal to the energy gap parameter A. 

We conclude that there are three nonexclusive alter­
natives in understanding the magnitude of the gap in 
heavy nuclei: 

(1) The gap is a finite size (e.g., surface) effect which 
either vanishes or becomes negligibly small in infinite 
nuclear matter. This is the interpretation, for example, 
of Nemirovsky and Adamchuk3 in fitting the pairing 
energy to an ^4;~0-551 law. 

(2) The energy gap in nuclear matter is comparable 
with the gap in heavy nuclei, but further corrections 
must be applied to the BCS theory in order to calculate 
the gap accurately. 

(3) The BCS theory is not relevant to the nuclear 
energy-gap problem. 

Alternative (1) is currently being investigated, and 
results will be reported in a subsequent paper. We will 
ignore the third alternative for the present. The present 
work is addressed to an examination of (2), namely, the 
investigation of higher order corrections to the BCS 
theory. 

In Sec. II, the Bogoliubov-Valatin canonical trans­
formation is introduced. The parameters of the trans­
formation are determined by the "principle of compen­
sation of dangerous diagrams." This condition leads to 
a generalized BCS integral equation which contains a 
renormalized pairing interaction and renormalized single-
particle energies. In a previous communication9 we 

9 E . M. Henley and L. Wilets, Phys. Rev. Letters 11, 326 
(1963). 

demonstrated that the second-order (in the transformed 
Hamiltonian) corrections to the pairing interaction are 
not exponentially small—as claimed by Bogoliubov, 
Tolmachev, and Shirkov10—and for simple attractive 
interactions can be important not only in determining 
the magnitude of the gap, but even its existence. The 
dominant second-order effects correspond, in perturba­
tion language, to the intermediate scattering of a 
particle-hole pair. 

In Sec. I l l , we consider the effect on the generalized 
BCS equation of including infinite sums of particle-hole 
and particle-particle diagrams in a one-dimensional 
model with a simple, separable interaction. The in­
clusion of second-order interaction terms for simple 
three-dimensional potentials, reported previously,9 is 
summarized in Sec. IV. 

The topic of primary interest is presented in Sec. V. 
This is the evaluation of the energy gap in nuclear 
matter. It is carried out for a sum of separable poten­
tials, consisting of a short-range repulsive shell and a 
longer range attraction, adjusted to fit two-body scat­
tering data. We have not restricted ourselves to 
scattering in singlet states only, but have included 
triplet forces as well. The calculation for the energy gap 
is carried out with the generalized BCS equation; it 
includes effects of particle-particle interactions to all 
orders and particle-hole forces to second order. The 

10 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A 
New Method in the Theory of Superconductimty (Consultants 
Bureau, Inc., New York, 1959), Chap. VII. 
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results indicate that the second-order corrections are 
very important to the magnitude of the calculated gap, 
but whether or not the gap is appreciable in size depends 
crucially on the assumed value of the effective mass. 

A critique of the calculations as well as suggested 
further areas of investigation is included in the con­
clusion. 

II. COMPENSATION OF DANGEROUS DIAGRAMS 

A. General Considerations 

The perturbation expansion of the ground-state 
energy of the many-body system involves the evaluation 
of integrals (diagrams) containing energy denominators 
which may vanish. The vanishing of a denominator is 
not catastrophic unless the resulting singularity is 
nonintegrable. The most serious (in the sense of phase 
space) vanishing denominators yet discovered occur 
when propagator lines have pair-wise equal and opposite 
momenta, and all lie at the Fermi surface. Even in this 
case, the singularities are integrable in each order of 
perturbation theory, but infinite sums of such diagrams 
—such as are normally summed by a T matrix—do lead 
to (logarithmically) divergent results. 

Bogoliubov11 has termed as " dangerous" that class of 
energy denominators which can lead to divergences. In 
order to circumvent divergence problems, he has pro­
posed a canonical transformation which introduces 
quasiparticle operators in place of particle operators. 
The most divergent propagators in the perturbation ex­
pansion of the transformed representation consists of an 
isolated pair of quasiparticle lines. The principle of 
"compensation of dangerous diagrams," expounded by 
Bogoliubov,11 is that the sum of all diagrams leading to 
an isolated pair must vanish for each value of the pair-
momentum. When this condition can be satisfied non-
trivially, the quasiparticle energies which appear in the 
propagators are always greater than some minimum 
value A>0. Then one anticipates that perturbation 
theory can be applied without danger of divergences 
reappearing. Although no singularities of any kind occur 
in any order, one must still be prepared for the possible 
appearance of singularities in infinite sums of the type 
included in T matrices. 

B. The Hamiltonian 

We consider a system of nuclear matter consisting of 
uncharged nucleons (neutrons and neutral "protons") 
described by the Hamiltonian 

i 

+ i E 5F+2M+2<l ,2 ,lF|12)aFWta2ai, (2.1a) 
1,1',2,2' 

11 N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58 (1958) 
[English transl: Soviet Phys.—JETP 34, 41 (1958)]; J. G. 
Valatm, Nuovo Cimento 7, 794 (1958). 

where the numeral (n) stands for the set (k»,sn,/„), with 
kn the vector momentum, sn the z component of spin, 
and tn the third component of isospin. Here € & = (¥k2/2m) 
—IJL is the kinetic energy of a particle measured relative 
to the chemical potential ju, which in lowest order is 
given by fi2kF2/2m. The chemical potential (=Fermi 
energy) is introduced as a Lagrangian multiplier to as­
sure the conservation of the mean number of particles 
when the approximations do not guarantee this con­
servation. The potential is taken to be real and to satisfy 
charge invariance, but may be spin-dependent. The 
interaction (V2f | V11 2) is the direct minus the exchange 
integral, such that 

(1 , 2 , | F |12 )=- (1 '2 , | F |21 ) . (2.1b) 

The a's satisfy the Fermion anticommutation relations 

Zan
f,an'"]-{.=8n,n^ (2.2) 

C. The Bogoliubov-Valatin Transformation 

We introduce a slight generalization of the Bogoliubov-
Valatin11 transformation, which consists in replacing the 
Fermion annihilation and creation operators akst and 
akst

f by the quasiparticle operators akst and akst
f defined 

by 

a*8tf^Uks<XkStf+v~k~sa~.k-st' (2.3) 

It can be shown that u and v may be chosen real and 
that the transformation is canonical if 

%ks = = U— k—s j 

vks=— v^k-s, (2.4) 

^kS
2+^kS

2=l. 

Then the operators an and an
f obey the same anti-

commutation rules as the operators an and aj. 
Because we are dealing with equal densities of 

neutrons and protons, we have assumed u and v to be 
independent of isospin. In actual heavy nuclei, the 
neutron and proton densities are quite different and so 
are the corresponding neutron and proton Fermi ener­
gies. If the two Fermi energies in actual nuclei were 
equal, one could consider a transformation which mixes 
proton and neutron operators. This would correspond to 
pairing neutrons to protons (with equal magnitude and 
oppositely directed momenta) rather than neutrons to 
neutrons and protons to protons. The phase space 
available to a neutron-proton pair coupled to zero total 
spin and momentum is twice as great as for like nucleons. 
The phase space enters crucially in the energy-gap 
condition. However, when the neutron and proton Fermi 
momenta are different, neutron-proton pairs no longer 
are dangerous, since their energies cannot vanish simul­
taneously. Although we will not consider explicit 
neutron-proton pairing, we will want to include other 
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effects arising from the interactions between neutrons 
and protons; for these purposes the equal density ap­
proximation will be maintained. 

The unperturbed ground, or vacuum, state |0) of the 
quasiparticle system is defined by 

an|0> = 0. (2.5) 

The transformation (2.3) is called "normal" or 
"trivial" if 

uk8=0, 

\ v k 8 \ = l , € k < U ; (2.6) 

€ k > U . 

In this case, the vacuum state of the quasiparticles is 
just the Fermi sea, with a^sf representing a particle 
creation (hole annihilation) operator for k above the 
Fermi sea or a hole creation (particle annihilation) 
operator for k below the Fermi sea. 

1. Potential Vertices 

Direct substitution of the transformation (2.3) into 
the Hamiltonian (2.1) gives the transformed Hamil-
tonian. The ground-state energy of the transformed 
system can be computed by summing the contributions 
of all vacuum-to-vacuum connected diagrams generated 
by the transformed Hamiltonian. These diagrams can be 
constructed with the aid of the following rules: 

In Fig. 2 (a) we have drawn what we shall refer to as 
the "standard" potential vertex. The operators reading 
from right to left in Eq. (2.1) are associated with the 
legs read counterclockwise beginning at the lower right. 
The standard vertex contributes a factor 

(iW,i+2<l '2 ' | 711 2»(«i^«a«i) . 

Other distinct vertices can be generated from the stand­
ard one by rotating the legs about the vertex point from 
one side of the vertical to the other. A new diagram so 
obtained contains the same potential matrix element as 
the standard vertex. The remaining factors, or weight 
factors as we will call them, are given as follows: 

(1) In rotating a leg, do not cross the lower dotted 
line. 

(2) The arrows remain fixed on a leg; that is, the 
right-left sense of an arrow reverses in crossing the upper 
vertical. This assures two arrows into, and two arrows 
out of, each vertex. 

(3) Crossing the upper vertical changes the leg in­
dices from k, s, t to — k, — s, t; the t index remains un­
changed. This assures conservation of linear momentum 
and z component of spin across a vertex. Quasiparticle 
number is not conserved. If, as a mnemonic, we think of 
an arrow to the left as meaning a quasiparticle and an 
arrow to the right as an antiquasiparticle, then quasi­
particle number can be thought of as conserved inde­
pendently for neutrons and protons at a vertex. If (n) 

2' v I /Z 

FIG. 2. Standard diagrams, (a) is the v ^ | X. 
standard potential vertex; (b) illustrates / I \ . 
how the partial weight factors u and v are , / J \ 
associated with arrows pointing to the left 
and right, respectively. (a) 

—4 U 

• V 

( b ) 

denotes (kn,sn,tn), we will mean by (—n) the set 
V •Kfi, Sny l In)* 

(4) If one rotated leg crosses another, the vertex 
weight factor is multiplied by (—1). 

(5) The vertex weight factor contains the product of 
four u's and v% one for each leg according to whether 
the arrow points to the left or to the right, respectively 
[see Fig. 2(b)]. 

Two legs connected to the same vertex may be joined 
(contracted) into a loop according to the following rules. 

(6) One leg must come from the right, and one from 
the left, of the (not necessarily standard) diagram. Both 
legs must bear identical indices. 

(7) The relative position of the legs must be obtain­
able from the standard diagram without having 
switched (crossed) the pair. 

(8) The weight factor associated with the pair is now 
determined by interchanging the legs of the loop (with 
no accompanying sign change) and then applying 
rule (5). 

2. Kinetic-Energy Vertices 

The transformed kinetic-energy operator assumes the 
form 

2Z € f c [ ( ^ k s 2 — Vks
2)aksMkst 

kst 

+wks^_k_s(akSftce-k-s«t+o;-k-Sia!kSf) + ^ks
2]. (2.7) 

The terms involving uv factors play the same role in the 
perturbation expansion of the ground state as does the 
potential. Diagrammatically they give rise to wedge 
vertices, opening to the right or left. Each such vertex 
has associated with it the factor e* multiplied by a 
weight factor obtained by applying rules (l)-(5) above 
to the standard diagram given in Fig. 3. Only the wedge-
type kinetic vertices are to be considered on a par with 
the potential vertices. 

3. Propagators 

Legs from different vertices labeled with the same 
index (k,syt) may be connected by lines irrespective of 

FIG. 3. Standard diagram for kinetic w 
energy vertex, "* '> 
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-fct-
kst-

FIG. 4. Diagrammatic representation of 
the generalized compensation condition. 

the arrow direction. Every such line will have two 
arrows, each belonging to its respective vertex. If a pair 
of connecting lines cross, a factor (—1) must be in­
cluded; this is consistent with rule (4). Between each 
pair of successive vertices (reading from right to left) 
there is associated a factor (E0—£ £k)-1, where the 
sum is taken over all propagator lines which exist 
simultaneously between the two vertices; E0 is zero for 
the vacuum state, £k is the coefficient of aksMksty 

%k=(uk
2—vk

2)ek. (2.8) 

(The spin index has been suppressed.) For the normal 
transformation, Eq. (2.6), this becomes £k=|€&|; in 
general, £k is non-negative. 

4. The Compensation Condition 

It is sufficient, in order to compensate dangerous 
diagrams, to assert as a condition on the transformation, 
that the sum of all diagrams (Fig. 4) going from the 
vacuum to an isolated propagator pair (k, s, t, — k—s, t) 
must vanish for each (k,s,i). Diagrams which contain an 
intermediate state consisting of only an isolated pair 
need not be considered. 

D. Lowest Order Diagrams: The BCS 
Integral Equation 

Listed in Fig. 5 are all vacuum-to-pair diagrams 
through first order in the transformed interaction (po­
tential and kinetic). Setting the sum of these diagrams 

(a) (b) 

(c) ( d ) . 

(e) ( f ) 

FIG. 5. Vacuum-to-pair diagrams through first order in the 
transformed interaction, 

equal to zero, one finds 

- 2 W l [ e 1 + E ^ 2 ( l l , | F | l l / ) ] 

— («i*—»i»)i Z; ^ i ^ ^ l — 1 | T̂ | 1'—1/>=0, (2.9) 
1' 

where the first term in the square brackets is (a+b), the 
second (c+d) and the next term of the equation is due 
to (e) and (/). Symmetries of the potential matrix 
elements have been used in combining terms. The sum 
over (1') for (e) and (/) assumes the 5-function condi­
tion that ty = t%. 

The effect of diagrams (c) and (d) is to "dress" the 
single-particle energies by the usual Hartree-Fock po­
tential energy. The dressed particle energies will be 
denoted by 

* i=€ i+E*i ' * ( l l , | F | l l / >. (2.10) 

In order that the density be the same as for a non-
interacting gas, the chemical potential y must be 
dressed as well. 

Equation (2.9) can be cast into the standard BCS 
form by setting 

W / 2\ ( 
«k 

(Ak*+«k»)W. ) • 
(2.H) 

where we have assumed that €k and Ak are independent 
of spin direction. This leads at once to the integral 
equation 

A* 
Ak=-£E-

k' (Av*+tv*y* 
(2.12a) 

where, to this order, 

Gkk>°=iZ(ks, - k - * | V\Vs, -k'-s) 
-<k$, - k - * | V\V-s9 -Vs)]. (2.12b) 

The isospin index, which is constant throughout, has 
been suppressed. Note that G° is derivable from the 
singlet-spin part of the interaction only. 

With some manipulation, the expectation value of a 
quasiparticle excited "state" ce^lO) can be shown to 
be given by 

|ks<0|akt |ffak,|t|0>-<0|ff|0> 
= (Ak 2 +lk 2 ) 1 / 2 . (2.13) 

|k is to be interpreted—approximately—as an inde-
pendent-quasiparticle excitational energy. We see that 
| k > A = A % . 

E. Generalized Energy-Gap Equation 

With complete generality, we can group vacuum-to-
pair diagrams (Fig. 4) into two classes, as shown in 
Fig. 6. Each arrow shown belongs to the vertex to which 
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s-T^® 
FIG. 6. Diagrammatic representation of the generalized integral 

equation. The vacuum-to-pair diagrams are grouped according to 
whether the external arrows point in the opposite or same direc­
tions. In the latter case, Gkk', there is always at least one internal 
line with arrows pointing in opposite directions; this is explicitly 
indicated by the loop labeled k'. 

the line is attached inside the blob. Both solid and 
dashed arrow diagrams must be included in the sums. It 
is trivial to show that any diagram with both free leg 
arrows pointing out (or in) must have at least one 
internal line in which the two arrows point in opposite 
directions. (They need not loop in the direction shown, 
however.) The loop involves a factor u^v^; the sum 
over momenta k' is explicitly displayed by this separa­
tion. With these diagramatic definitions of €k and Gkk', 
and retaining Eq. (2.11), the BCS integral equation now 
can be generalized formally to9 

Ak< 

k' (Ak>2+6k>2)1/2 
(2.14) 

The solution of this integral equation satisfies the 
compensation conditions to all orders in the transformed 
interaction. Our task now is to investigate higher order 
corrections to e and G. 

There is a special property of the kinetic-energy 
vertices which we shall use in evaluating G to second 
order in the transformed interaction. In Fig. 7(a) is 
shown the only second-order diagram containing a 
kinetic-energy vertex. If, however, the second-order 
diagram 7(b) is added to 7(a), the sum can be shown to 
be of third order. This can be generalized to state that 
an wth-order diagram containing a kinetic-energy vertex 
[e.g., 7(d)] plus the same order "potential-loop" dia­
gram [e.g., 7(e)] are of (^+l)st order. Consider the 
sequence of diagrams 7(a'), 7(b'), 7(c'), * * * [which are, 
for example, the left-hand parts of the sequence 7(a), 
7(b), 7(c), • • •]• H ^ w e r e n ° t f° r the (two) propagator 
lines at the bottom, the sum of this set would yield the 

compensation condition and thus be zero. But the extra 
propagator lines affect the value of the diagram only 
when intermediate states are involved, as in 7(c'), 7(d'), 
• • •. Thus the difference between the sum of the primed 
and the compensation sets is of second order. 

L Renormalized Particle Energies, ek-

In Fig. 8 are displayed some of the types of diagrams 
which contribute to Ik. The particular set displayed is 
the beginning of a sequence which, when summed, gives 
[compare Eq. (2.10)] 

6 i + E ^ 2 ( i i , | r f e + ^ ) | i i , > , 

with the T matrix satisfying 

<l'2'|r(a>)|12> 

= {V2'\V\\2)+ir,{M\V\V'2") 
1 " 2 " 

(2.15) 

X-
Ul"ZU2" Ol"+2" , l+2 

<l"2"|r(co)|12>. (2.16) 

This corresponds closely to the Brueckner T matrix for 
summing particle-particle scattering in the presence of 
a pair of holes of momentum (— 1, — 1')—the major dia­
grams which are summed in the elementary Brueckner 
theory—the only difference being that in the latter case 
the w's are given by the normal transformation (2.6). 

In Fig. 8 (b) is shown a set of diagrams for calculating 
the renormalized energy of a single "particle." The dia­
grams in 8(b) have exactly the same topological struc­
ture as 8(a), but differ in the intermediate propagators 
which enter in second order and beyond. We will not 
here be concerned with the actual calculation of £k, but 
will rather rely for these upon previous calculations on 

(b) 

<Z1 (<~L ^Z S £ ^=>c. 
(a1) <b') id) (rf) (#') 

FIG. 7. Diagrams (a), (b), (c), (d), • • • are a subset of vacuum-
to-pair diagrams. The pieces to left of the broken lines are ex­
plicitly displayed in diagrams (a'), (b'), (c'), (d'), • • •. It is shown 
in the text that the sum of diagrams (a'), (b'), (c'), (d') are of 
second order, and hence the sum of (a), (b), (c), (d), • • • are of 
third order. 

FIG. 8. A comparison of 
diagrams (a) contributing 
to €, with a topologically 
equivalent set (b) con­
tributing to the renor­
malized single "particle" 
energy. 

Sl 

-o-

-db-
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FIG. 9. Contributions to the renormalized single quasiparticle 
propagator |k-

the "normal" state of nuclear matter. This is predicated 
on the assumption that Ik depends only weakly on Ak 
when Ak is small. In calculations reported here, we 
further assume that €k can be described by an effective-
mass approximation 

!k=(#-W)* 2 /2w*, (2.17) 

where m,* is evaluated at the Fermi surface. 

2, Renormalized Quasiparticle Energies |k 

The energy denominators which enter into propa­
gators for intermediate states are the sums of £'s, which 
in lowest order are given by Eq. (2.8). The diagrams 
which determine the renormalized propagator energies, 
| k , are given in Fig. 9; the external u and v factors are 
here included in the sum. Through first order in the 
potential, these diagrams give the result in Eq. (2.13). 
When intermediate-state propagators enter into the 
evaluation of the blobs in Fig. 9, the diagrams also 
depend on these intermediate states (they are repre­
sented by dashed lines in Fig. 9), since these affect the 
energy denominators. We will make the independent 
quasiparticle approximation and take the |k to be inde­
pendent of the number of other excitations.12 Consistent 

4 w FIG. 10. jP-matrix-type vacuum-to-pair 
" ^ N V r ^ > ^ r ^ V - ^ diagrams. These are not allowed. 

with this approximation, we will evaluate the internal 
factors of the blobs in Fig. 9 by bending the right-hand 
legs around and equating to the topologically equivalent 
diagrams in Fig. 6 (i.e., the compensation condition). 
This gives 

lk= (^k2—vk
2)ek—ukvk L ^k'^k'GW 

k' 

= (Ak
2+€k2)1/2. (2.18) 

Equations (2.11) and (2.14) were used in obtaining the 
final form. Note that this is formally identical with 
Eq. (2.13). 

3. Renormalized Pairing Potential GW 

The remainder of this paper is primarily devoted to 
the evaluation of Gw and the subsequent effect on the 
nuclear energy gap. We note first, that G is not related to 
the Brueckner T matrix. Replacement of G by T would 
sum diagrams of the type shown in Fig. 10, but these 

12 See, however, H. A. Bethe, B. H. Brandow, and A. G. 
Petschek, Phys. Rev. 129, 225 (1963). 

contain intermediate states consisting of only an iso­
lated pair, and must be excluded. In different termi­
nology, including the diagrams of Fig. 10 would result in 
double counting. 

The kinds of diagrams we will consider are displayed 
in Fig. 11. Diagrams with all arrows reversed and 
topologically equivalent variations of such diagrams 
must also be included. Not all of the diagrams shown 
will be summed simultaneously. We note, in particular, 
that (b') contains two extra (a total of three) factors of 
wqflq=Aq/2(Aq

2+€q
2)1/2, and is expected to be consider­

ably smaller than diagrams with only one such factor. 
We have not obtained an analytic estimate of the re-

(a) (b) fc) (d) 

> 
(b1) 

FIG. 11. Some diagrams which contribute to the renormalized 
pairing interaction. In diagram (b), the potential vertices have 
been replaced by T matrices, see Fig. 12. 

duction of diagrams due to factors of uv, but in Sec. IV 
a numerical comparison is made. It is plausible10 that 
each function uv reduces a diagram by a factor pro­
portional to A. 

For some simple potentials, it is possible to sum 
special infinite sets of diagrams. In the case of nuclear 
potentials which contain repulsive infinite cores, it is 
necessary to sum some subset (if one goes beyond the 
BCS approximation) in order to obtain finite results. 
Thus in Fig. 11(b) the two potential vertices have been 
replaced by T matrices (2\ and T2). These T matrices 
are sums of diagrams which involve pairs of lines with 
arrows pointing only to the left ("forward-going 

FIG. 12. Diagrammatic representation of the T matrices of 
Fig. 11(b). Only interactions of bubbles with arrows pointing to 
the left are included. 
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graphs"), as indicated in Fig. 12: 

( l ' 2 ' | r 1 | 1 2 ) = ( l ' 2 ' | r ( | r + | 2 0 | 1 2 ) , 

( i ' 2 ' | r 2 | i 2 ) = ( i ' 2 ' | r ( | 1 + | 2 ) | i 2 ) , 
(2.19) 

and T(co) is given by Eq. (2.16). [When variations of (b) 
are included, only the T matrices derived from forward-
going graphs are considered.] The limit A—>0 [i.e., 
replacing the u's by the normal distribution function 
Eq. (2.6)] is well defined in Eq. (2.16) and should intro­
duce no new singularities. Depending upon the particu­
lar potential employed, JT(CO) may or may not have a 
pole in the range of interest, i.e., o>>2A. For a purely 
attractive potential, such a pole always exists (at least 
for ki+k2=0) and is located at exactly minus the energy 
of the Cooper pair state.13 It can be shown (Sec. Ill) for 
a separable attractive interaction that the pole lies 
below 2A(0), where A(0) is the gap calculated to lowest 
order [i.e., using Eq. (2.11)]. In the case of the par­
ticular nuclear potentials employed, we have established 
that there is no pole for the singlet interaction. The 
triplet interaction—which has a pole at the deuteron 
binding energy when kF—0—has a pole in oo very close 
to zero, and positive. This is an annoying accident and 
can be circumvented either by decreasing the attraction 
slightly or by assuming the existence of a small but 
finite gap. We chose the latter. 

The sequence diagrams of Fig. 11(a), (b) (with T re­
placed by V), (c), (d), • • •, can be summed for some 
special interactions that are discussed in Sec. III. In 
that case, the pairing interaction Gkk' can be written as 
the sum 

Gkk'°[l-/7**'+(/y* :')2- •] = 

If the contribution of (b) is small compared to that of 
(a), this justifies terminating the sequence with (b). Its 
contribution to the effective pairing interaction is9 

S2t2 3 4 

( _ 1 4 | 7 | _ 3 2 ) ( - 3 1 | F | - 2 4 ) 
X ;— : . (2.20) 

The diagrams for the renormalized pairing potential 
also have an analogy with conventional perturbation 
theory. Thus, corresponding to Fig. 11, we find the 
diagrams of Fig. 13 (and similar diagrams with reversed 
arrows, etc.) which are obtained by breaking the leg 
with opposite arrows in Fig. 11. [There is no perturba­
tion diagram corresponding to 11 (b')-] The diagrams 
13(b), 13(c), 13(d), • • •, in perturbation language, con­
tain the exchange of particle-hole pairs. 

4. Isotropy of At 

Although nuclear matter by definition has rotational 
symmetry, it is not obvious that the solutions of the 

13 L. N. Cooper, Phys. Rev. 104, 367 (1956). 

FIG. 13. Conventional 
perturbation analog of Fig. 
11; these diagrams contrib­
ute to the renormalized 
pairing interaction. Note 
change of both horizon­
tal and vertical scales at 
^=3F"!. 

generalized integral equation (2.14) also possess rota­
tional symmetry. The question already arises in lowest 
order (G== V) when the potential contains components 
beyond the s wave,14 and occurs for the general G even 
when only s-wave scattering is considered. The pairing 
interaction is capable of polarizing the medium in a 
preferred direction. (Such phenomena are familiar in 
crystalline structure.) The energy levels of the system 
are degenerate with respect to the orientation of the 
preferred direction. This degeneracy can be utilized to 
generate another state which has an isotropic spectrum 
—namely, a linear combination of state vectors which is 
in average over all directions of orientation. 

The anisotropy effects are real and interesting, but 
will be ignored in the present analysis; that is, we take 
Ak to be isotropic. This immediately allows us to 
average Gkk' over the angles between k and k'. The 
resultant average depends only on the magnitudes of k 
and k' and is denoted by Gkk'* 

III. ONE-DIMENSIONAL PROBLEM 

A. Through Second Order 

In order to gain some insight into the importance of 
higher order corrections to the BCS equation, we first 
investigate the one-dimensional problem for one type of 
Fermion interacting solely in singlet s states : 

(3 4\V\12)=(hh\V\k1k2) 
X8(h+h-k1-k2)S(3 4)5(1 2), (3.1) 

where 
5 ( 1 2) ==5S1,i/25S2,1/2 —5Sl,_i/25S2,1/2 . 

For simplicity, we have studied an attractive "shell" 
interaction15 (fi=2m=l) 

(hki\V\k1k2)=-f for (\ki\-kF)2<w, 
*'=1,2,3,4, 

=0 otherwise, (3.2) 
14 K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel, 

Phys. Rev. 118, 1442 (1960); R. Balian and N. R. Werthamer, 
ibid. 131, 1553 (1963). 

15 The specific form of the potential is not crucial so long as it is 
a smoothly varying function. Thus, we have also investigated the 
problem for a separable Yamaguchi potential and have obtained 
similar results. 
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with w<KkF
2. The integral equation for Ak through 

second order is 

A *' 
A*=i/L — 

x[l-2/E Uk+qVk>-q— (uv)k+q(uv)k'-q~\ 

£& + W + £&+<?+ ?& 
(3.3) 

Because of the form of the potential (3.2), the sums are 
restricted so that the momenta k, k', k+q, and kf—q all 
lie within the shell. We use the effective-mass approxi­
mation for the energies l&= (k2—kF

2)m,/m,*. 
The solution of the lowest order integral equation 

(only first-order terms in / are kept) yields a gap which 
is constant inside the shell region: 

A*°=A° = -
2kFwm \kFwm 

wi* sinh(l/g) £2>1 ni* 
-Ho 

(\k\~kF)2<W, 

= 0 otherwise, (3.4) 

where 
g=ftn*/ (2wmk F) . 

We now turn to the solution of (3.3) including the 
second-order terms. In particular, we solve for A = Afci?, 
with the assumption that on the right-hand side of (3.3) 
the momentum dependence of Ak> can be neglected 
inside the shell region. This is a good approximation, 
since A& is important only near the Fermi surface. 
Moreover, we have seen that A& is independent of k for 
the leading order solution (3.4). The effect of the second-
order terms in / is to cause Ak to be an increasing 
function of \\k\— kF\. This is because the u2v2 term 
dominates the (uv) (uv) term, and the major k depend­
ence arises from the energy denominator. This yields the 
result that the second-order term is an algebraically 
increasing function of p | — kF\. Thus evaluating A^ at 
kF underestimates the correction terms. 

Consistent with the evaluation of the correction terms 
to second order, we will take the normal distributions 
(2.6) for u and v and, in the energy denominator of the 
second-order term, set 

tk=2kF\\k\-kF\/(m*/m). 

The integrals can now be evaluated. The leading order 
expression for (3.3) when the gap is small (i.e., 
ftn*/2wtnkF=g<&l), is 

l = F(l-\F)+0(g), (3.5a) 

F=g\R(2kFtnw/m*A). (3.5b) 

The terms 0(g), which we now neglect, include the 
contribution of the (uv)(uv) term. Note that the domi­
nant second-order terms are comparable with the 

where 

first-order terms and are not of order e~lla as suggested 
by Bogoliubov, Tolmachev, and Shirkov.10 

The lowest order solution obtains from setting F=\. 
The solution of (3.5) requires F=2 , or 

A« (4km/in*)(r*lg, g « l . (3.6) 

Equation (3.6) differs from (3.4) in that e~1/d is now 
replaced by e~2/g. This is, of course, a very large reduc­
tion for g<Kl. Note that if the terms 0(g) are negative, 
no solution obtains. 

B. Sum of "Particle-Hole" Graphs 

Because of the importance of the second-order correc­
tions, it is of interest to investigate higher order terms. 
Since our potential is separable in each momentum 
coordinate, the sum of diagrams (a), (b) [with Ti=T2 

= V2J (C), (d), • • •, in Fig. 11 can be written explicitly as 

Gkv = — -/[l — 7**'+ (7**')2— (7**')8+'•' * ] 

- / 

with 
1+7* 

7**' = 2 / E -
Uk+fVk'-q' 

V £&+£&'+£/fc-f-<Z+§A;'-g 

(3.7) 

(3.8) 

Note that ykk> is positive for an attractive interaction, 
and tends to weaken the strength of G relative to the 
lowest order value.16 In particular, we note that 

2kFwm 
7 ^ ^ - ^ l n =iF, g « l . (3.9) 

w*A 

If we replace Gkk' by GkFkF and A^ by A in the 
integral equation (2.14) we obtain, instead of (3.5), 

1 = F/(1+IF), (3.10) 

or F=%, and for the gap parameter 

A~(4kFtn/nt*)e-We. (3.11) 

There is still a significant reduction in the gap relative to 
lowest order value (3.4), but it is not so dramatic as the 
second-order result (3.6). 

The same method of summing <<particle-hole,, dia­
grams can be extended trivially to three dimensions for 
the '••shell" interaction or the exchange part of a local 
interaction. If the second-order term is already small 
compared with the leading order term, however, we are 
justified in terminating the sequence at second order. 

C. T-Matrix Vertices 

We now investigate the effect of employing T matrices 
in diagram (b) of Fig. 11. The T-matrix integral 

16 For a repulsive interaction, G may have a pole corresponding 
to a collective "exciton"; A. Bardasis and J. R. Schrieffer, Phys. 
Rev. 121, 1050 (1961). 
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equation (2.16) can be solved to yield 

<p+k,p-k\T(u)\p+V,p-k') 

- f 

l ~ " / L « ^ 2 H - Q 2 ^ p - 3 2 / ( w + | p + a + | ^ g ) 
, (3.12) 

where it is understood that all momenta lie within the 
shell region. 

The question arises whether (and where) T(o>) has a 
pole corresponding to a Cooper pair state. This has been 
investigated by Tomasini,17 who has shown in a per­
turbation context, that no such pole can exist. The 
argument must be modified in our self-consistent treat­
ment.18 The term S g in the denominator is largest when 
^ = 0 and w=2A (the smallest value w assumes). In this 
case 

(k-k\T(2A)\kf-kf) 

- / 

! - * / £ « ««V(A+|«) 1-*(A) 
, (3.13) 

and a pole arises if h can equal unity. But h(A) satisfies 
the inequalities 

tf«4 uq
A 1 

*(A)«i/E—7-<i/E—<*/£-• 
q A+^q q §g q £fl 

(3.14) 

In the limit of g<^l and A/w^kr^t, the inequalities 
approach equalities, and we find 

h(A)->iF(A). (3.15) 

Thus, if the lowest order BCS integral equation is used 
to determine A, we note that ^(A°)~>|, and no pole 
occurs.17 However, we have seen that the inclusion of 
particle-hole scattering [Eq. (3.7)] tends to decrease the 
energy gap. If only second-order diagrams are included, 
h(A) —» 1, but if the whole set of particle-hole diagrams 
is summed (see Fig. 11), A (A) —> | . 

The effect of replacing V by T, as in Fig. 11(b), is to 
increase the second-order correction (when V is attrac­
tive), decrease the gap, and hence increase h beyond the 
value f. Perhaps, a crude estimate of this replacement 
can be obtained by inserting T at every vertex in Figs. 
11(b), (c), ••• [jtiot (a)]; that is, / is replaced by 
/ / ( l—*)»/ / ( !—J/0- Then Eq. (3.10) becomes 

1=-
l+iF/(l-§F) 

(3.16) 

which has no solution for F real. This is undoubtedly too 
stringent a bound, since the T matrix assumes the value 
—i/( l -~ |F) only at one point [^=0, w=2A in Eq. 
(3.12)] and we must integrate T over a range of values 
of p and w. Hence, no definite conclusion can be drawn 

17 A. Tomasini, Nuovo Cimento 20, 963 (1961). 
18 See also Ref. 9. 

about the existence of a pole of the T matrix, nor about 
the energy gap for the chosen interaction. 

IV. THREE-DIMENSIONAL PROBLEM 

The results obtained in the previous section tell us 
that, in one dimension, higher order terms in the 
interaction cannot be neglected in solving for the energy 
gap. In a letter,9 we have shown that this is not peculiar 
to the one-dimensional problem. For various attractive 
interactions acting only in singlet states, it was demon­
strated that: 

(a) The second-order interaction terms, Gh+G¥, are 
not of order A compared with G° and they tend to reduce 
the energy gap. 

(b) The (uv) (uv) terms are small compared with the 
(u2) (#) terms if A is small. 

(c) For some parameters of the interaction, there is 
no solution to the gap equation (2.14) when terms only 
up to second order in the interaction are included. 

(d) It is necessary to solve the energy-gap equation 
self-consistently rather than resorting to a perturbation 
procedure. The latter arises in the evaluation of | (&F) by 
standard perturbation methods following (say) a lowest 
order transformation characterized by A0. Through 
second order, |(&F) = A is given by the right-hand side 
of Eq. (2.14). Perturbation theory would replace A by 
A0 wherever it appears; the self-consistent procedure 
maintains A on the right-hand side. We rewrite the gap 
equation (2.14) in the form9 

A=/ / 1 (A) - f / 2 (A) , (4.1) 

where —/is the strength of the interaction. In the limit 
of small A, J2(A)//i(A) approaches a constant inde­
pendent of A, in contrast to the one-dimensional case 
[see Eq. (3,5)]. To illustrate the difference between the 
self-consistent and perturbation solutions of (4.1), we 
note that for sufficiently small gaps, we may set 

h^ciln0/A), 

/,=<;, In(j8/A), 
(4.2) 

where c% and c$ are constants and ft is some charac­
teristic range of the interaction. The self-consistent 
solution of (4.1) is 

A=A°exp 
—c2 

ci2(l—fc2/ci)J 
~A°exp(-<;2Ai2), (4.3) 

where A°=j8a~1/</cl) and the final form assumes jfoAi 
<3Cl. On the other hand,pthe perturbation solution yields 

A p . r t = A ° r i ~ ( / c 0 ] . (4.4) 
en 

If c^/ci2 is numerically small, for example, we find 

A p e r t ~ A 0 

A--A° 
(4.5) 
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Thus the perturbation procedure would predict a much 
smaller correction to the energy gap than would the 
self-consistent procedure. We wish to emphasize that 
the differences do not approach each other even when 
the corrections are small. 

We have not summed particle-hole graphs in the 
three-dimensional case, but as indicated in the letter,9 

this can be done for the exchange part of a separable 
interaction. 

V. NUCLEAR MATTER 

With the insights gained from our studies in Sees. I l l 
and IV, we now investigate the energy gap in infinite 
nuclear matter. For small gaps, we have seen that the 
contribution to GW given by diagram 11 (V) is small 
compared with that of (b). Furthermore, if G6 is small 
compared with G°, as is found to be the case, then it is 
consistent to neglect diagrams 11 (c), (d), • • •. Thus we 
only investigate Gb. Whereas in lowest order only the 
singlet component of the interaction contributes to G°, 
both singlet and triplet components contribute to Gh. 
We note also that the particle-hole pair exchanged be­
tween the vertices can be either a neutron pair or a 
proton pair regardless of the isospin of the external lines. 

The sum of all diagrams of the type 11(b) leads to the 
contribution (fi2=2m=l) 

Gb= (5 /4 )G"- i (G"+G"+G") , (5.1) 
where 

Gkk."' 
Mk+q2flk'-q2 

--2Y.- ; ; 
<1 ?k+?k' + !k+«+Ck'-« 

X ( - k , k ' - q | r ' ( | k + | k . _ , | - k - q , V) 

X < - k - q ) k | ^ ' ( l k ' + | k ' - q ) | - k ' ; k ' - q ) , 

[y, /=*(singlet), /(triplet)]. (5.2) 

The T matrices satisfy the equations [compare 
(2.16)] 

< p + k ' , p - k ' | r ' ( « ) | P + k , p - k > 

= (p+k' ,p-k' |F' |p+k,p-k> 

k' 

^ p + k " 2 ^ p - k " 2 

' CO+lp+k" + £p-k" 

.X<p+^p-kM7lp+k" ,p-k"> 

X ( p + k / , , p - k / ' | ^ ( c o ) | p + k , p - k ) . (5.3) 

The T matrix was evaluated using the^ normal [Eq. 
(2.6)] form for the u's and replacing | by \i\. The 
potentials employed were of the Puff type; that is, the 
s-wave part of a hard shell plus an attractive Yamaguchi: 

< p + k ' , p - k ' | F ' | p + k , p - k > 

sin&Vc sinkrc 
= Km Ac 

2(2T)*X, 

V (ftH-**) (&*+**) 
(5.4) 

The T matrix for a potential which can be written as a 
finite sum of separable terms, 

=8(K-K')(2x)« Z Kwa(p)wa(p') 
a 

can be written 

<iK+p,JK-p|r(«)|§K'+p,iK'-p'> 
= S(K-K') E (ZA+l(K,o>)T%a.wa(p)wa,(p'), 
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FIG. 14. Plots of the contributions to GW& along the cuts k' = 0 
and k' = k. Here m*/m = l. 
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o.oi 

FIG. 15. Plot of GW* for 
k'—0 and k'=k. The com­
plete solid and dashed 
curves are for m*/m = l. 
Fragments of curves for 
k — k' close to kF are shown 
for various values of m*/tn. 
The dotted curve and the 
dot-dash curve are Yamagu-
chi representations (tn*/ni 
= 1, k' = k) of Gkk>h corre­
sponding to the two ranges 
of the interaction given in 
Table I. Note change of 
both horizontal and vertical 
scales at £ = 3F_1. 
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k(F- ' ) 

where A is a diagonal matrix with elements Xa and the 
matrix elements of L(K,o)) are given by 

' = X„ I dp 
a)+dK2+2p"2)/(ni*/?n) 

These integrals were evaluated in part analytically and 
in part numerically. 

The parameters for the singlet and triplet interactions 
are listed in Table I. 

The most extensive calculations were carried out 
using the singlet parameters I (original Puff19), although 
we now believe set II gives a better representation of the 
two-body scattering data.8 It turns out that GH domi­
nates Gh for most values of k and k', so that the final 
results are somewhat insensitive to the singlet potential 
assumed. 

Plots of the three Gkk>
vv' appear in Figs. 14 and GWb 

is shown in Fig. 15 [Gkk> is GW averaged over the angle 
£ (kk')]. All computations were made with type-I 
potentials, and were carried out by a numerical four-

TABLE I. Table of s-wave potential parameters. Type-I parame­
ters are those given by Puff (Ref. 19); type II are derived in paper 
II and yield a better fit to the singlet s-wave scattering data. 

Type 

I 
I I 

X(F-B) 

3.64 
0.886 

Singlet 

2.004 
1.602 

'•00 

0.45 
0.257 

Triplet 

A(F-*) /3(F-i) 

8.695 2.453 
8.695 2.453 

rc(F) 

0.45 
0.45 

dimensional Monte Carlo integration.20 In the limit 
A —»0, Gkkfb is everywhere finite and continuous. It 
does, however, possess infinite first derivatives at k=kf 

=kpj and can be shown to behave like 

Gjc,kF+x
b=GkF+x,kF+xba: const—\x\ln\x\, 

| * | « £ F . (5.5). 

When A is small but finite, the cusp at the Fermi surface 
is smoothed out over a momentum range of the order of 
M*A/2fnkF. The numerical integrations reported here 
were made with A-0.01F-2 (0.2074m/w* MeV), kF 

= 1.4F-1, so that the cusps appear as narrow peaks 
-0.003F-1 wide. Gkk>

ss, G W and (Gkk>
st+Gkk>

ts) in­
dividually and therefore Gkk'

b are symmetric with 
respect to the exchange of k and k\ Except for the cusp 
at k = k'=kF, the (r's are smoothly varying functions of 
k and kf. We have only exhibited plots for cuts through 
the (k,k') plane corresponding to k = kf and &' = 0, 
although we have investigated the functions (especially 
Gkk>

ss) more thoroughly. For large values of k (i.e., 
fc>>/3), Gkk'vv' is determined almost solely by the hard 
core of the potential, and is thus independent of v and v'. 

Figures 14 and 15 show that Gu and (Gst+Gts) are 
generally of the same sign as Gss. However, they appear 
with opposite signs in Eq. (5.1). Thus GS8 alone would 
tend to reduce the energy gap in nuclear matter whereas 
the combination tends to increase the gap. 

The most extensive survey was made for m*/w=l . 
However, in Fig. 15 we have also plotted a segment of 
the Ghhh curve near the Fermi surface for various fn*/w>. 

20 These integrals were carried out by performing a transfor-
R. Puff, Ann. Phys. (N.Y.) 13, 317 (1961). mation which increased the sampling where v2 is large. 

file:///x/ln/x/
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FIG. 16. Energy gap parameters A0 and A as functions of tn*/m. 
The solid curves are calculated from the lowest order, BCS 
integral equation for the two potentials (types I and II) given in 
Table I (see also Ref. 8). The dashed curves include the contribu­
tions of Gkh'h calculated with the type-I potential. 

It is seen that the numerical results are, unfortunately, 
extremely dependent upon the value of the effective 
mass. We say "unfortunately" because values of the 
effective mass which are sufficiently precise for our 
purposes are not available. 

Generally, if the Hamiltonian is multiplied by the 
dimensionless effective mass m^/m, then this parameter 
appears only multiplied by the potential—i.e., (energy 
Xfft*/tn) is a function of (strength of the interaction 
Xfn*/tn). When hard-shell interactions are present, then 
m*/m appears only multiplied by the finite (attractive) 
part of the interaction (i.e., A„). 

The form Gkwh in Fig. 15 shows that the potential 
falls off rapidly outside of the Fermi sphere. From the 
behavior of solutions to the BCS equation with shell 
interactions, we know that the strength of the potential 
(at the Fermi surface) enters into the argument of the 
exponential, whereas the momentum range of the inter­
action enters only multiplicatively. This suggests ap­
proximating Gb by some mathematically convenient 
potential of appropriate range. We have chosen a 
Yamaguchi potential of the same range as the attractive 
part of the singlet 5-wave interaction. Once this ap­
proximation has been made, we can immediately utilize 
the calculations of paper II to estimate the energy gap, 
since G—G°+Gb now corresponds to a change in strength 
of the attraction (or of m*). We have included in Fig. 15 
the two Yamaguchi fits to Gkkh corresponding to the 
ranges of the attractive singlet parts of type-I and 
type-II potentials. (We "conservatively" chose the 
normalization to pass, not through k — k'=kF, but, 

rather arbitrarily, through an average of the points at 
k — kf= 1.3,1.4, and 1.5. The point at &F= 1.4 was given 
double weight.) It is seen that Gh is of shorter range in k 
(longer range in configuration space) than the attractive 
singlet part of the nuclear potentials. 

The solid curves8 in Fig. 16 give the energy gap A0 as a 
function of m,*{kF=lA¥~l) for the two potentials (see 
Table I). Associated with each solid curve is a broken 
curve for A obtained according to the prescription of the 
previous paragraphs. Recall that Gb is calculated using 
the type-I potential. We now believe that the type-II 
potential is a better fit to the singlet scattering data. 
The triplet interaction is more important than the 
singlet in determining Gb (compare Fig. 14), but G° is 
determined completely by the singlet interaction. This 
tends to lend somewhat more credence to the type II 
results in Fig. 16. From this figure we note that unless 
m*/m is larger than 0.85, the energy-gap parameter in 
nuclear matter remains uninterestingly less than 0.1 
MeV. Nevertheless, the higher order corrections com­
puted here are seen to have a large effect on the magni­
tude of the gap. (Note that the difference between the 
results for two potentials is relatively less important 
when the gap is large.) The value of m*/m suggested by 
Brueckner et al.21 is 0.73. Bethe, Brandow, and Petschek12 

estimate an effective mass of 0.85 for the reference 
spectrum; the relevance of the reference spectrum will 
be examined in the next section. 

VI. CONCLUSIONS 

In an accompanying paper8 it is shown that for 
"realistic" forces the BCS energy gap in nuclear matter 
is several orders of magnitude lower than that deduced 
for the heaviest nuclei. In this article we have attempted 
to improve the nuclear-matter calculations by gener­
alizing the gap equation to include higher order terms in 
the transformed interaction. Both here and in a previous 
Letter,9 we have conclusively demonstrated that such 
higher order terms which allow nontime-reversed pairs 
to be scattered, are not negligible, as had been argued.10 

Their inclusion can change the numerical value of the 
gap in nuclear matter by orders of magnitude. The 
computed value of the gap is sensitive to the effective 
mass and to details of the nuclear potential in the range 
where the gap is small and therefore uninteresting. 
However, it becomes less sensitive to these parameters 
as the gap increases. Qualitatively we can say that if the 
effective mass is less than about 0.75, the gap parameter 
A is expected to be negligible; if the effective mass is 
larger than about 0.85, then we expect A to be larger 
than —0.1 MeV. 

In order to improve upon the reliability of the above 
calculation, we might suggest the following: 

(a) One should include the difference between the 
energy spectrum of intermediate states that occur in 

21 K. A. Brueckner, J. L. Gammel, and J. T. Kubis, Phys. Rev. 
118, 1438 (1960). 
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higher order diagrams and that of an isolated quasi-
particle. The ek which enters in | k = (Ak

2+ek
2)1/2 is 

closely related to the normal single-particle energy 
computed by Brueckner et al.21 (fn*/tn^0.7)J but the 
intermediate-state energies [which enter both in the 
jT-matrix series and explicitly in the integral for Gb, 
Eq. (5.2)] are more closely related to the reference 
spectrum of Bethe, Brandow, and Petschek. The refer­
ence spectrum energies are characterized by a larger 
effective mass (m*^0.85) and an additive constant. 

(b) It would be useful to repeat our calculations with 
the best phenomenological potentials (with explicit use 
of one-pion exchange), thus including the effects of 
relative angular-momentum states beyond 1=0. In that 
case it would also be interesting to determine the 

I. INTRODUCTION 

THE prediction of an energy gap in the spectrum 
of a superconductor by the theory of Bardeen, 

Cooper, and Schrieffer1 (BCS) and observations on the 
spectra of even-even nuclei have led to the speculation 
that the same concepts might apply to nuclei2 and 
nuclear matter.3'4 An essential feature of a supercon­
ducting system is the attractive interaction of time-
reversed pairs near the Fermi surface. The present paper 
uses this feature to study the energy gap in infinite 
nuclear matter. 

Solutions of the basic integral equation are obtained 
which qualitatively confirm the results of Emery and 
Sessler,5 who used a Gammel-Thaler potential acting in 
s waves only. In addition, we show the effects on the 

* Supported in part by the U. S. Atomic Energy Commission 
under Contract A.T. (45-1) 1388, Program B. 
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anisotropy of the gap with respect to some arbitrary 
direction. 

The results of our calculation lead us to believe that 
the energy gap in infinite nuclear matter is very small, 
if not absent. This suggests that the gap may well be a 
finite-size effect, and work is in progress to determine 
whether this is indeed the case. 
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gap of different forms of the potential between nucleons, 
define criteria for the existence of an energy gap (see 
also Ref. 4), and compare approximate solutions with 
exact solutions of the integral equations. 

II. ENERGY GAP FOR A SINGLE 
SEPARABLE INTERACTION 

The basic equation to be solved is the BCS integral 
equation1 (for notation, see Ref. 6; however, we use 
here Ak for the quantity Ak°) 

Ak,Gk,k>° 

k' (c^+A^2)1 '2 

The energy gap is interpreted as 2Aki?=2A. ek> is a 
renormalized single-particle energy measured with 
respect to the Fermi energy and Gk,k'° is the free-
particle-interaction matrix element 

G k t k , °=<k , -k |7 |k / , -k / >. 

Throughout this paper only the s-wave part of this 
matrix is used, and €k is represented by the effective-

6 E. M. Henley and L. Wilets, preceding paper, Phys. Rev. 
133, B1118 (1964). 
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The Bardeen-Cooper-Schrieffer (BCS) theory is employed to study the energy gap in nuclear matter with 
various internucleonic potentials which fit singlet low-energy scattering data and the s-wave phase shift at 
310 MeV. The interactions are expressed as the sum of two terms, each of which is separable, thus admitting 
exact solutions of the energy-gap equation. The dependence of the energy gap on the form and parameters 
of the interaction, as well as on the nuclear density and effective mass, is investigated. For normal nuclear 
density, the gap is found to be small compared with that observed in the heaviest nuclei. 


